Processing math: 100%

지난 글에서는 가설검정 중에서 1표본 Z검정에 대해서 정리하였다.

즉, 하나의 모집단과 표본에 대한 가설검정만 다루었다.

 

이번에는 두 모집단과 표본에 대해서 가설검정 하는 내용을 다루려고 한다(2표본 Z검정).

이 글은 훌륭한 유튜브 강의 영상인 손으로만 푸는 통계 내용을 많이 참조하였음을 밝힌다.

 

이번에는 어떤 두 모집단 A, B가 있다고 하자. 이때 각 모집단의 모분산 σ2Aσ2B는 알려져있다고 가정한다.

그런데 누군가가 모집단 A의 평균 μA와 모집단 B의 평균 μB가 같다고 하는 의심스러운 주장을 하고 있다. 이런 의심스러운 주장(가설)을 통계적으로 검정해보려고 한다. 다르게 말하면 우리는 μA=μB임을 주장하고 싶다. 그럼 여기서 귀무가설과 대립가설은 어떻게 될까? 아래와 같이 된다.

귀무가설 H0: μA=μB

대립가설 H1: μBμB  

 

 

가설 검정의 기본적인 원리는 1표본 Z검정 때와 같다. 모집단 전체를 조사하기 어려우니까 각각 표본을 뽑아 조사하도록 하고, 아래와 같이 표본을 뽑는다. 이번에도 모집단 A와 B의 모분산이 알려져 있고, 표본의 크기 nAnB는 30보다 크다고 가정한다.

표본의 크기가 30보다 크므로, 중심극한 정리에 의해, 다음이 성립한다.

¯XAN(μA,σ2AnA), ¯XBN(μB,σ2BnB)

 

이전에 1표본 Z검정에서는 모집단의 평균이 특정 값인지 아닌지를 따지는 것이어서 E(ˉX)를 특정 값 μ인 정규분포로 놓고 표준정규분포를 이용해 p-value를 구하고 유의수준 α와 비교했다. 근데 여기서는 귀무가설 자체가 어떤 특정 값과 비교하는 것이 아니고, 값을 모르는 두 모집단의 평균이 같다라는 것이기 때문에 이전과 같이 할 수가 없다. 그래서 약간의 기술을 사용하는데, 다음과 같이 변수를 새로 정의한다. Y=ˉXAˉXB

이렇게 해주는 이유는 어차피 μAμB를 알 수 없으니, 둘의 차이를 새로운 관점으로 해서 접근해보겠다는 것이다.

그러면 귀무가설은 μA=μB E(Y)=μAμB=0

이 된다. 그런데 ˉXAˉXB가 각각 정규분포를 따르므로, Y는 다음과 같은 정규분포를 따른다. Y가 아래와 같은 정규분포를 따른다는 것은 수학적 증명이 필요한데, 자세한 증명은 손으로만 푸는 통계 채널을 참고하도록 하고 여기서는 생략한다. YN(0,σ2AnA+σ2BnB)

모집단 A, B에서 각각 뽑은 표본의 평균을 ¯XA,1,¯XB,1이라고 하면 Y1=ˉXA,1ˉXB,1이다. 즉, 모집단 A, B에서 표본을 하나씩 뽑으면 위 정규분포에서도 Y에 대한 표본을 하나 뽑은 것과 같다. 유의수준 α를 0.05로 정했다고 하고, 어쨌든 이 상태에서 Y의 분포에 대한 평균과 분산을 알고 있으니 표준정규분포를 이용해서 Y1에 대한 p-value를 구할 수가 있다. 만약 구한 p-value가 α보다 작으면, 즉 표본이 기각역 안에 있으면 귀무가설을 기각하고 대립가설을 채택할 수가 있게 된다.

 

다시 말해서, 두 모집단 A, B의 평균의 차이가 0이다 라는 귀무가설이 참이라고 했을 때, 표본을 추출해봤더니 뽑힐 확률이 5%미만인 표본이 나왔다면, 귀무가설이 잘못되었다고 볼 수 있는 것이다. 

이번엔 가설 검정에 대해 정리하려고 한다.

정리하려고 여러 자료를 찾아보던 중 엄청나게 설명을 잘 해놓은 유튜브 영상이 있어, 이 영상에 나온 내용 위주로 정리하려고 한다. 정말이지 너무 설명을 깔끔하게 잘 해놔서 존경스럽다. 나도 이렇게 명확하고 깔끔하게 잘 설명할 수 있으면 좋으련만. 영상 주소는 여기. 나처럼 통계를 공부해보려는 사람에게 아주 유용한 강의가 채널에 잔뜩 올라와있다. 강추!!

 

 

그럼 가설 검정에 대한 이야기를 시작해보자.

가설 검정이란, 말그대로 어떤 '가설'이 있을 때, 그 가설이 맞는지 틀린지 통계적인 관점에서 '검정'해보는 것이다.

먼저 어떤 상황에서 가설 검정을 하게 되는지를 보면 좀 더 순조롭게 이해가 된다.

 

상황 X)

어떤 분포를 알 수 없는 모집단이 있을 때, 어떤 사람 A가 와서 이 모집단의 평균값이 μ라고 밑도 끝도 없는 주장을 해대고 있다. 나는 대충 어림잡아 봐도 μ은 아닐 것 같아 상당의 의심이 드는데, 이 사람이 사기꾼인지 아닌지 알아보기 위해 통계적인 방법으로 A의 '가설'을 검증해보려고 한다.

 

여기서 A의 주장을 즉 가설을 '귀무가설(Null hypothesis)'이라고 한다.

그 이름도 어려운 귀무가설은 돌아갈 , 없을 를 써서 무無로 돌아갈 가설을 의미한다. 즉, 터무니 없는 가설이므로 기각될 가설이라는 뜻이다. 기호로는 보통 H0로 표현한다.

아무리 터무니없어 보여도 귀무가설이 참이 확률이 있다. 따라서 귀무가설은 기각될 수도 있고 채택될 수도 있다. 쉽게 말해 통계적으로 검정을 해보았을 때 기각된다 함은 '옳지 않은 가능성이 높다고 판단'한다는 것이고 채택된다는 것은 '옳을 가능성이 높은 것으로 판단'한다는 것이다.

 

귀무가설이 기각될 때 채택하는 가설로 '대립가설(Alternative hypothesis)'이라는 것이 있다. 이름 alternative에서 알 수 있듯이 단순히 귀무가설이 기각되면 채택하는 가설이다. 기호로는 보통 H1로 표현한다.

예를 들어 귀무가설이 '이 모집단의 평균이 100입니다!'라고 했을 때 대립가설은 '이 모집단의 평균은 100이 아니다.' 또는 '이 모집단의 평균은 100보다 크다.' 따위가 될 수 있다.

그렇다면 위의 상황 X에서 귀무가설과 대립가설을 정의해보면 어떻게 될까? 아래처럼 될 것이다.

귀무가설 H0: 모집단의 평균값이 μ이다.

대립가설 H1: 모집단의 평균값이 μ가 아니다.

 

자 그러면 어떤 방식으로 통계적 가설 검정을 하는 것일까?

먼저 이전 글에서 다룬 중심극한정리통계적 추정에 대한 내용이 숙지되어 있어야 한다.

 

A라는 사람이 모집단의 평균이 μ라고 주장하고 있다. 가장 좋은 방법은 이 모집단을 전수조사해서 평균을 내보는 것이지만 모집단이 너무 커서 시간적으로나 비용적으로나 불가능하다. 이런 상황에서는 통계적 추정에서 그랬던 것처럼 표본을 뽑아서 추론해보는 수밖에 없다.

그러니까 이사람 말대로라면 모집단의 평균이 μ라는 거니까, 중심극한정리에 의하면 표본평균의 평균 역시도 μ이어야 한다. 즉, 수학적으로 이 상황의 귀무가설과 대립가설을 수학적으로 표현해보면 아래와 같다.

귀무가설 H0:E(ˉX)=μ

대립가설 H1:E(ˉX)μ

 

그럼 이제 표본을 뽑아보자.

아래 그림처럼 모집단에서 랜덤 샘플링한 표본의 평균을 ¯X1, 분산을 s2이라고 하자. 여기서는 모집단의 분산 σ2이 알려져 있다고 가정하겠다.

중심극한정리에 의하면, 표본의 크기가 충분히 클 때(30 이상일 때) 표본평균의 분포는 다음과 같은 정규분포를 따른다고 했다. ˉXN(μ,σ2n)

그러니까 지금처럼 표본을 하나 뽑는 행위는 아래 그림처럼 정규분포에서 표본평균을 하나 뽑는 것과 같다고 지난 글에서도 이야기했었다. 

다시 말해, 만약 A의 가설이 옳아 모집단의 평균이 μ가 맞다면 μ를 평균으로 하는 정규분포에서 샘플링을 하는 것이기 때문에, 높은 확률로 μ근처의 표본 평균이 샘플링될 것이고, 낮은 확률로 양 끝에 있는 표본평균이 샘플링될 것이다.

따라서 만약 추출한 표본의 평균 ¯X1가 위 그림처럼 오른쪽 끝에 있는 놈이라면, 그 상황은 다음 두 가지로 생각해볼 수 있다.

1) A의 가설이 옳고, 낮은 확률로 ¯X1가 뽑힌 것이다.

2) ¯X1가 뽑힐 확률이 너무 낮으니까, A의 가설이 틀렸다고 봐야 한다. 즉, 저런 정규분포가 아닐 것이다.

 

'낮은 확률'의 기준을 정하는 것은 사용자의 몫이다. A의 가설이 옳다고 했을 때 ¯X1가 뽑힐 확률이 1% 미만이면 A의 가설이 틀렸다고 할 수도 있고 1%가 아니라 5%, 10% 정하기 나름이다. 보통은 5%를 많이 쓰는 것 같다. 이 때의 '낮은 확률'을 '유의 수준 α(Significant level)'라고 하며 이것을 5%로 정했다고 했을 때 α=0.05가 된다. 5% 미만의 확률로 뽑히는 영역 즉 α=0.05인 부분이 아래 그림과 같다고 했을 때, 저 영역을 α=0.05에 해당하는 '기각역'이라고 한다. 저기서 표본평균이 뽑힌다면 귀무가설이 틀렸다고 기각할거니깐.

우리가 뽑은 표본의 평균 ˉX가 기각역 안에 있다고 해보자. 즉 사용자가 기각하기로 한 유의수준보다 낮은 확률로 뽑히는 곳에 있다(보라색 영역). 이 영역의 확률을 '유의 확률(Significant probability)' 또는 'p-value'라고 한다. 만약 보라색 영역의 확률이 2%라면 p-value=0.02가 된다.

p-value를 이용해서 귀무가설이 기각될 조건을 다시 한 번 써보면 p-value < α2라고 할 수 있다(2로 나눠주는 이유는 기각역이 양쪽 끝에 있으므로).

 

위 정규분포에서 p-value 즉 ¯X1가 뽑힐 확률을 계산하는 것은 간단하다. 표준화를 해서 표준정규분포표를 이용하면 된다. 참고로 이런 식으로 표본 하나와 표준정규분포를 이용해 검정하는 방법을 '1표본 Z검정'이라고 한다고 한다.  

 

 

 

+ Recent posts