Loading [MathJax]/jax/output/CommonHTML/jax.js

이번엔 가설 검정에 대해 정리하려고 한다.

정리하려고 여러 자료를 찾아보던 중 엄청나게 설명을 잘 해놓은 유튜브 영상이 있어, 이 영상에 나온 내용 위주로 정리하려고 한다. 정말이지 너무 설명을 깔끔하게 잘 해놔서 존경스럽다. 나도 이렇게 명확하고 깔끔하게 잘 설명할 수 있으면 좋으련만. 영상 주소는 여기. 나처럼 통계를 공부해보려는 사람에게 아주 유용한 강의가 채널에 잔뜩 올라와있다. 강추!!

 

 

그럼 가설 검정에 대한 이야기를 시작해보자.

가설 검정이란, 말그대로 어떤 '가설'이 있을 때, 그 가설이 맞는지 틀린지 통계적인 관점에서 '검정'해보는 것이다.

먼저 어떤 상황에서 가설 검정을 하게 되는지를 보면 좀 더 순조롭게 이해가 된다.

 

상황 X)

어떤 분포를 알 수 없는 모집단이 있을 때, 어떤 사람 A가 와서 이 모집단의 평균값이 μ라고 밑도 끝도 없는 주장을 해대고 있다. 나는 대충 어림잡아 봐도 μ은 아닐 것 같아 상당의 의심이 드는데, 이 사람이 사기꾼인지 아닌지 알아보기 위해 통계적인 방법으로 A의 '가설'을 검증해보려고 한다.

 

여기서 A의 주장을 즉 가설을 '귀무가설(Null hypothesis)'이라고 한다.

그 이름도 어려운 귀무가설은 돌아갈 , 없을 를 써서 무無로 돌아갈 가설을 의미한다. 즉, 터무니 없는 가설이므로 기각될 가설이라는 뜻이다. 기호로는 보통 H0로 표현한다.

아무리 터무니없어 보여도 귀무가설이 참이 확률이 있다. 따라서 귀무가설은 기각될 수도 있고 채택될 수도 있다. 쉽게 말해 통계적으로 검정을 해보았을 때 기각된다 함은 '옳지 않은 가능성이 높다고 판단'한다는 것이고 채택된다는 것은 '옳을 가능성이 높은 것으로 판단'한다는 것이다.

 

귀무가설이 기각될 때 채택하는 가설로 '대립가설(Alternative hypothesis)'이라는 것이 있다. 이름 alternative에서 알 수 있듯이 단순히 귀무가설이 기각되면 채택하는 가설이다. 기호로는 보통 H1로 표현한다.

예를 들어 귀무가설이 '이 모집단의 평균이 100입니다!'라고 했을 때 대립가설은 '이 모집단의 평균은 100이 아니다.' 또는 '이 모집단의 평균은 100보다 크다.' 따위가 될 수 있다.

그렇다면 위의 상황 X에서 귀무가설과 대립가설을 정의해보면 어떻게 될까? 아래처럼 될 것이다.

귀무가설 H0: 모집단의 평균값이 μ이다.

대립가설 H1: 모집단의 평균값이 μ가 아니다.

 

자 그러면 어떤 방식으로 통계적 가설 검정을 하는 것일까?

먼저 이전 글에서 다룬 중심극한정리통계적 추정에 대한 내용이 숙지되어 있어야 한다.

 

A라는 사람이 모집단의 평균이 μ라고 주장하고 있다. 가장 좋은 방법은 이 모집단을 전수조사해서 평균을 내보는 것이지만 모집단이 너무 커서 시간적으로나 비용적으로나 불가능하다. 이런 상황에서는 통계적 추정에서 그랬던 것처럼 표본을 뽑아서 추론해보는 수밖에 없다.

그러니까 이사람 말대로라면 모집단의 평균이 μ라는 거니까, 중심극한정리에 의하면 표본평균의 평균 역시도 μ이어야 한다. 즉, 수학적으로 이 상황의 귀무가설과 대립가설을 수학적으로 표현해보면 아래와 같다.

귀무가설 H0:E(ˉX)=μ

대립가설 H1:E(ˉX)μ

 

그럼 이제 표본을 뽑아보자.

아래 그림처럼 모집단에서 랜덤 샘플링한 표본의 평균을 ¯X1, 분산을 s2이라고 하자. 여기서는 모집단의 분산 σ2이 알려져 있다고 가정하겠다.

중심극한정리에 의하면, 표본의 크기가 충분히 클 때(30 이상일 때) 표본평균의 분포는 다음과 같은 정규분포를 따른다고 했다. ˉXN(μ,σ2n)

그러니까 지금처럼 표본을 하나 뽑는 행위는 아래 그림처럼 정규분포에서 표본평균을 하나 뽑는 것과 같다고 지난 글에서도 이야기했었다. 

다시 말해, 만약 A의 가설이 옳아 모집단의 평균이 μ가 맞다면 μ를 평균으로 하는 정규분포에서 샘플링을 하는 것이기 때문에, 높은 확률로 μ근처의 표본 평균이 샘플링될 것이고, 낮은 확률로 양 끝에 있는 표본평균이 샘플링될 것이다.

따라서 만약 추출한 표본의 평균 ¯X1가 위 그림처럼 오른쪽 끝에 있는 놈이라면, 그 상황은 다음 두 가지로 생각해볼 수 있다.

1) A의 가설이 옳고, 낮은 확률로 ¯X1가 뽑힌 것이다.

2) ¯X1가 뽑힐 확률이 너무 낮으니까, A의 가설이 틀렸다고 봐야 한다. 즉, 저런 정규분포가 아닐 것이다.

 

'낮은 확률'의 기준을 정하는 것은 사용자의 몫이다. A의 가설이 옳다고 했을 때 ¯X1가 뽑힐 확률이 1% 미만이면 A의 가설이 틀렸다고 할 수도 있고 1%가 아니라 5%, 10% 정하기 나름이다. 보통은 5%를 많이 쓰는 것 같다. 이 때의 '낮은 확률'을 '유의 수준 α(Significant level)'라고 하며 이것을 5%로 정했다고 했을 때 α=0.05가 된다. 5% 미만의 확률로 뽑히는 영역 즉 α=0.05인 부분이 아래 그림과 같다고 했을 때, 저 영역을 α=0.05에 해당하는 '기각역'이라고 한다. 저기서 표본평균이 뽑힌다면 귀무가설이 틀렸다고 기각할거니깐.

우리가 뽑은 표본의 평균 ˉX가 기각역 안에 있다고 해보자. 즉 사용자가 기각하기로 한 유의수준보다 낮은 확률로 뽑히는 곳에 있다(보라색 영역). 이 영역의 확률을 '유의 확률(Significant probability)' 또는 'p-value'라고 한다. 만약 보라색 영역의 확률이 2%라면 p-value=0.02가 된다.

p-value를 이용해서 귀무가설이 기각될 조건을 다시 한 번 써보면 p-value < α2라고 할 수 있다(2로 나눠주는 이유는 기각역이 양쪽 끝에 있으므로).

 

위 정규분포에서 p-value 즉 ¯X1가 뽑힐 확률을 계산하는 것은 간단하다. 표준화를 해서 표준정규분포표를 이용하면 된다. 참고로 이런 식으로 표본 하나와 표준정규분포를 이용해 검정하는 방법을 '1표본 Z검정'이라고 한다고 한다.  

 

 

 

+ Recent posts